Micro-grid analysis to meet general service demand on the South UPS campus

Authors

DOI:

https://doi.org/10.47187/perspectivas.8.1.248

Keywords:

Microgrid (MG), Cost of Energy (COE), Power grid, HOMER Pro, Energy Optimization

Abstract

This paper presents the analysis of a photovoltaic microgrid to supply general services on the South Campus of the Salesian Polytechnic University. The mathematical model employed makes it possible to estimate the power generated by the source and the costs of grid energy under real demand conditions, achieving techno-economic optimization. Using HOMER Pro software, different scenarios integrating solar generation, energy storage systems, and inverters are simulated, allowing their performance to be compared in both grid-connected and standalone modes. It was determined that the geographical location of the campus offers optimal irradiance levels of 4.03 (kWh/m²/day), which favors the system’s energy generation. The simulation results demonstrate the potential of microgrids to reduce dependence on the conventional electrical system. It was identified that the off-grid mode is more efficient, as it represents a 34.82% reduction in operating costs and a 9.92% return on investment over the next 6.94 years.

References

[1] E. González, D. Gualotuña, and J. F. Quinteros Flores, “Diseño de una Micro-Red óptima mediante el uso del recurso solar fotovoltaico en la Universidad Politécnica Salesiana – Campus Sur, utilizando el software HOMER PRO,” Revista de I+D Tecnológico, ISSN-e 2219-6714, ISSN 1680-8894, Vol. 18, No. 2, 2022 (Ejemplar dedicado a: Revista de I+D Tecnológico), págs. 109-123, vol. 18, no. 2, pp. 109–123, 2022. DOI: https://doi.org/10.33412/idt.v18.2.3647

[2] A. Saxena, P. Yakaiah, B. Pravallika, S. Ahmed, G. Nijhawan, and B. Rajalakshmi, “Comparative Impact of Wind and Photovoltaic Energy Integration on Isolated Microgrid Self-Sufficiency and Load Management,” Proceedings of International Conference on Communication, Computer Sciences and Engineering, IC3SE 2024, pp. 668–673, 2024, doi: 10.1109/IC3SE62002.2024.10593349. DOI: https://doi.org/10.1109/IC3SE62002.2024.10593349

[3] M. Simonazzi, N. Delmonte, P. Cova, and R. Menozzi, “Models for MATLAB Simulation of a University Campus Micro-Grid,” Energies 2023, Vol. 16, Page 5884, vol. 16, no. 16, p. 5884, Aug. 2023, doi: 10.3390/EN16165884. DOI: https://doi.org/10.3390/en16165884

[4] et al., “Implementation of Microgrid on the University Campus of UNICAMP- Brazil: Case Study,” Journal of Electronics and Advanced Electrical Engineering, vol. 1, no. 2, pp. 21–25, 2021, doi: 10.47890/jeaee/2020/rodolfoquadros/11120009.

[5] R. Quadros, J. L. Jucá, J. G. I. Cypriano, R. P. B. da Silva, L. C. P. da Silva, and R. G. Bento, “Implementation of Microgrid on the University Campus of UNICAMP- Brazil: Case Study,” Journal of Electronics and Advanced Electrical Engineering, vol. 1, no. 2, pp. 21–25, 2021, doi: 10.47890/jeaee/2020/rodolfoquadros/11120009. DOI: https://doi.org/10.47890/JEAEE/2020/RodolfoQuadros/11120009

[6] A. Cagnano, E. De Tuglie, and P. Mancarella, “Microgrids: Overview and guidelines for practical implementations and operation,” Appl Energy, vol. 258, p. 114039, Jan. 2020, doi: 10.1016/J.APENERGY.2019.114039. DOI: https://doi.org/10.1016/j.apenergy.2019.114039

[7] S. Bracco, F. Delfino, F. Foiadelli, and M. Longo, “On the integration of solar PV and storage batteries within a microgrid,” Proceedings - 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2019, Jun. 2019, doi: 10.1109/EEEIC.2019.8783861. DOI: https://doi.org/10.1109/EEEIC.2019.8783861

[8] “HOMER - Híbrido Software de Diseño de Sistemas de Generación Renovables y Distribuicionadas.” Accessed: Jul. 31, 2025. [Online]. Available: https://www.homerenergy.com/products/pro/index.html

[9] R. C. Echegaray-Aveiga, M. Masabanda, F. Rodriguez, T. Toulkeridis, and F. Mato, “Solar Energy Potential in Ecuador,” 2018 5th International Conference on eDemocracy and eGovernment, ICEDEG 2018, pp. 46–51, Jun. 2018, doi: 10.1109/ICEDEG.2018.8372318. DOI: https://doi.org/10.1109/ICEDEG.2018.8372318

[10] S. Bracco, M. Brignone, F. Delfino, and R. Procopio, “An energy management system for the savona campus smart polygeneration microgrid,” IEEE Syst J, vol. 11, no. 3, pp. 1799–1809, Sep. 2017, doi: 10.1109/JSYST.2015.2419273. DOI: https://doi.org/10.1109/JSYST.2015.2419273

[11] N. T. Uruchi et al., “Techno-Economic Optimization of an Isolated Solar Microgrid: A Case Study in a Brazilian Amazon Community,” Eng 2025, Vol. 6, Page 133, vol. 6, no. 7, p. 133, Jun. 2025, doi: 10.3390/ENG6070133. DOI: https://doi.org/10.3390/eng6070133

[12] S. E. Saukh and A. V. Borysenko, “MATHEMATICAL MODEL OF A FLEXIBLE MICRO GRID INTEGRATED INTO THE COUNTRY GRID,” 2023. doi: https://doi.org/10.15407/techned2023.02.061. DOI: https://doi.org/10.15407/techned2023.02.061

[13] J. A. Shaikh, N. H. Mirjat, Z. A. Memon, S. A. Shan, and S. A. Shaikh, “Optimization of renewable energy based microgrid for Mehran UET Jamshoro,” J Phys Conf Ser, vol. 1860, no. 1, Apr. 2021, doi: 10.1088/1742-6596/1860/1/012022. DOI: https://doi.org/10.1088/1742-6596/1860/1/012022

[14] J. Sreedhar, N. Ashish, P. U. Kumar, V. Pravalika, and N. G. Reddy, “Control of Solar and Wind Battery Storage Based Micro Grid Using Simulation,” 2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems, ICITEICS 2024, 2024, doi: 10.1109/ICITEICS61368.2024.10625533. DOI: https://doi.org/10.1109/ICITEICS61368.2024.10625533

[15] “NASA POWER | Data Access Viewer (DAV).” Accessed: Dec. 09, 2025. [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/

[16] “Vista de Eficiencia Energética en la Universidad Católica sede Azogues un enfoque de implementación técnico – económico basado en energía solar | Revista Técnica ‘energía.’” Accessed: Dec. 07, 2025. [Online]. Available: https://revistaenergia.cenace.gob.ec/index.php/cenace/article/view/420/660

[17] M. Hafer, “Quantity and electricity consumption of plug load equipment on a university campus,” Energy Effic, vol. 10, no. 4, pp. 1013–1039, Aug. 2017, doi: 10.1007/S12053-016-9503-2/TABLES/4. DOI: https://doi.org/10.1007/s12053-016-9503-2

[18] P. A. Játiva Morejón, “Diseño de una infraestructura de datos espaciales ambientales del Campus Sur de la Universidad Politécnica Salesiana - fase 1,” 2020, Accessed: Dec. 07, 2025. [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/19199

[19] “Renewables.ninja.” Accessed: Dec. 07, 2025. [Online]. Available: https://www.renewables.ninja/

Published

2026-01-28

Issue

Section

Artículos arbitrados

How to Cite

[1]
“Micro-grid analysis to meet general service demand on the South UPS campus”, Perspectivas, vol. 8, no. 1, pp. 1–9, Jan. 2026, doi: 10.47187/perspectivas.8.1.248.