Sign Language Recognition for Electrical Device Control

Authors

  • Jefferson Ramírez Escuela Superior Politécnica de Chimborazo
  • Robert Rodríguez Loaiza Escuela Superior Politécnica de Chimborazo
  • Kevin Saavedra Escuela Superior Politécnica de Chimborazo
  • Ana Logroño Escuela Superior Politécnica de Chimborazo

DOI:

https://doi.org/10.47187/perspectivas.7.2.244

Keywords:

Dactylographic Sign Language Recognition, Artificial Intelligence, Artificial Vision, Microcontroller-Based Circuit, Electrical Devices, Wireless Communication, Remote Control

Abstract

This research paper presents the implementation of a dactylographic sign language recognition system using artificial intelligence applied to control electrical devices. The system aims to enhance interaction between humans and electrical devices, particularly for individuals with hearing impairments, by providing a natural and intuitive method for interaction. The system utilizes computer vision techniques to recognize hand gestures in dactylographic sign language, and a microcontroller-based circuit controls the electrical devices. The system performance was evaluated in terms of accuracy, response time, and usability, yielding promising results for future applications in industry and medicine.

References

[1] ”Discapacidad: lo que todos debemos saber”, Revista do Instituto de Medicina Tropical de S˜ao Paulo, vol. 48, n.º 3, pp. 146, junio de 2006. Accedido el 31 de julio de 2023. [En l´ ınea]. Disponible: https://doi.org/10.1590/s0036-46652006000300015

[2] S. K y P. R, ”Sign Language Recognition System Using Neural Net works”, Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, n.º 6, p. 827–831, junio de 2022. Accedido el 1 de agosto de 2023. [En l´ ınea]. Disponible: https://doi.org/10.22214/ijraset.2022.43787

[3] M. Ishihara y M. Tsuda, ”Hearing support system for the hear ing impaired”, en 2021 IEEE 3rd Global Conf. Life Sci. Tech nol. (LifeTech), Nara, Japan, 9–11 de marzo de 2021. IEEE, 2021. Accedido el 1 de agosto de 2023. [En línea]. Disponible: https://doi.org/10.1109/lifetech52111.2021.9391875

[4] D. K. Choudhary, R. Singh y D. Kamthania, ”Sign Language Recog nition System”, SSRN Electron. J., 2021. [En l´ ınea]. Disponible: https://doi.org/10.2139/ssrn.3832151.

[5] N. Norouzi, G. Bruder, B. Belna, S. Mutter, D. Turgut y G. Welch, A Systematic Review of the Convergence of Augmented Reality, Intelligent Virtual Agents, and the Internet of Things, en Artificial Intelligence in IoT. Cham: Springer International Publishing, 2019, p. 1–24. Disponible: https://doi.org/10.1007/978-3-030-04110-6 1.

[6] X. Liang,” Internet of Things and its applications in libraries: a literature review”, Library Hi Tech, vol. 38, n.º 1, p. 67–77, agosto de 2018. Disponible: https://doi.org/10.1108/lht-01-2018-0014.

[7] A. Muñoz, J. C. Augusto, V. Tam y H. Aghajan,” Artificial intelligence for IoT systems”, J. Ambient Intell. Smart Environ., vol. 12, n.º 1, pp. 1, enero de 2020. Accedido el 1 de agosto de 2023. [En l´ ınea]. Disponible: https://doi.org/10.3233/ais-200548

Published

2025-07-07

How to Cite

[1]
J. A. Ribadeneira Ramírez, R. Rodríguez Loaiza, K. E. Saavedra Delgado, and A. . L. Logroño Noboa, “Sign Language Recognition for Electrical Device Control”, Perspectivas, vol. 7, no. 2, Jul. 2025.

Issue

Section

Artículos arbitrados

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.