
43
REVISTA PERSPECTIVAS
VOLUMEN 7, N˚1 / ENERO - JUNIO 2025 / e - ISSN: 2661
Machine Learning and Data Analytics,”
Lecture Notes in Electrical Engineering,
vol. 693 LNEE, pp. 37–49, 2021, doi:
10.1007/978-981-15-7675-1_4.
[11] I. Stanton, K. Munir, A. Ikram, and M. El-
Bakry, “Predictive maintenance analytics
and implementation for aircraft: Challenges
and opportunities,” Systems Engineering,
2022, doi: 10.1002/SYS.21651.
[12] T. Wuest, D. Weimer, C. Irgens, and
K. D. Thoben, “Machine learning in
manufacturing: advantages, challenges, and
applications,” http://mc.manuscriptcentral.
com/tpmr, vol. 4, no. 1, pp. 23–45, Jun. 2016,
doi: 10.1080/21693277.2016.1192517.
[13] J. Bell, “What Is Machine Learning?,”
Machine Learning and the City, pp. 207–216,
May 2022, doi: 10.1002/9781119815075.
CH18.
[14] V. Garg and A. T. Kalai, “Supervising
Unsupervised Learning,” Adv Neural Inf
Process Syst, vol. 31, 2018.
[15] S.-E. Kim, Q.-V. Vu, G. Papazafeiropoulos,
Z. Kong, and V.-H. Truong, “Comparison of
machine learning algorithms for regression
and classification of ultimate load-carrying
capacity of steel frames,” Steel and
Composite Structures, An International
Journal, vol. 37, no. 2, pp. 193–209,
2020, Accessed: Feb. 23, 2023. [Online].
Available: https://www.dbpia.co.kr/journal/
articleDetail?nodeId=NODE10697357
[16] S. Rong and Z. Bao-Wen, “The research
of regression model in machine learning
field,” MATEC Web of Conferences, vol.
176, p. 01033, Jul. 2018, doi: 10.1051/
MATECCONF/201817601033.
[17] M. Somvanshi, P. Chavan, S. Tambade,
and S. v. Shinde, “A review of machine
learning techniques using decision tree and
support vector machine,” Proceedings - 2nd
International Conference on Computing,
Communication, Control and Automation,
ICCUBEA 2016, Feb. 2017, doi: 10.1109/
ICCUBEA.2016.7860040.
[18] Y. Liu, Y. Wang, and J. Zhang, “New
machine learning algorithm: Random
forest,” Lecture Notes in Computer Science
(including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 7473 LNCS, pp. 246–
252, 2012, doi: 10.1007/978-3-642-34062-
8_32/COVER.
[19] Y. Tang, “Deep Learning using Linear
Support Vector Machines,” Jun. 2013, doi:
10.48550/arxiv.1306.0239.
[20] R. Y. Choi, A. S. Coyner, J. Kalpathy-
Cramer, M. F. Chiang, and J. Peter Campbell,
“Introduction to Machine Learning, Neural
Networks, and Deep Learning,” Transl Vis
Sci Technol, vol. 9, no. 2, pp. 14–14, Jan.
2020, doi: 10.1167/TVST.9.2.14.
[21] M. Ahmed, R. Seraj, and S. M. S. Islam,
“The k-means Algorithm: A Comprehensive
Survey and Performance Evaluation,”
Electronics 2020, Vol. 9, Page 1295, vol.
9, no. 8, p. 1295, Aug. 2020, doi: 10.3390/
ELECTRONICS9081295.
[22] O. Kramer, “K-Nearest Neighbors,” pp. 13–
23, 2013, doi: 10.1007/978-3-642-38652-
7_2.
[23] Y. Yu, X. Si, C. Hu, and J. Zhang, “A Review
of Recurrent Neural Networks: LSTM
Cells and Network Architectures,” Neural
Comput, vol. 31, no. 7, pp. 1235–1270, Jul.
2019, doi: 10.1162/NECO_A_01199.
[24] W. H. Lopez Pinaya, S. Vieira, R. Garcia-
Dias, and A. Mechelli, “Autoencoders,”
Machine Learning: Methods and
Applications to Brain Disorders, pp.
193–208, Mar. 2020, doi: 10.48550/
arxiv.2003.05991.
[25] T. P. Carvalho, F. A. A. M. N. Soares, R.
Vita, R. da P. Francisco, J. P. Basto, and S.
G. S. Alcalá, “A systematic literature review
of machine learning methods applied to
predictive maintenance,” Comput Ind
Eng, vol. 137, Nov. 2019, doi: 10.1016/j.
cie.2019.106024.
[26] R. Saranavan and P. Sujatha, “A
State of Art Techniques on Machine
Learning Algorithms: A Perspective
of Supervised Learning Approaches in
Data Classification,” econd International
Conference on Intelligent Computing and
Control Systems (ICICCS). Accessed:
Feb. 23, 2023. [Online]. Available:
https://ieeexplore.ieee.org/abstract/