Evaluation of the performance of the Global Positioning System (GPS) and INS / GPS on an established trajectory
DOI:
https://doi.org/10.47187/perspectivas.vol3iss1.pp10-17.2021Keywords:
Global Positioning System (GPS), Navigation System, Inertial System, Autonomous Vehicle, Pixhawk, Track AccuracyAbstract
The analysis of the accuracy of the Global Positioning System (GPS) versus DQ hybrid positioning system GPS and Inertial of Navigation. System (INS) allows determining which them offers greater accuracy in following an established path a GPS Module, inertial sensors and the Pixhawk controller card uses Kalman filter as a coupling method between GPS and INS, a telemetry system for data transmission and a decoder for the remote control. The test scenarios consist of two paths executed at 12:00 and 20:00 due to the atmospheric conditions present at different times of the day. It is confirmed that the GPS / INS system had an accuracy greater than GPS up to 73.6% on average of the two scenarios during the which day, while at night it increases the precision of up to 17.5%, this means that the implemented system has as a correction of errors produced due to ionization of the ionosphere, being the main attenuation factor of the GPS signal in the communication channel.
Métricas
References
SANZ SUBIRANA, J., et al. GNSS DATA PROCESSING, Vol. I: Fundamentals and Algorithms. Noordwijk-Netherlands: ESA Communications, 2013, pp. 1-63.
GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE PERFORMANCE STANDARD, 4th ed., Department of Defense, United States of America, Sep 2008, approved for public release, distribution is unlimited.
DURÁN IGLESIAS, Victor. Sistema de navegación inercial 3D para VFR. 2017. Tesis de Licenciatura. Universitat Politècnica de Catalunya.
WANG, G., et al., "A GNSS/INS Integrated Navigation Algorithm Based on Kalman Filter". IFAC-PapersOnLine, (2018). p. 232-237. ISSN 2405896
MIGUEZ ALGABA, A., Integración de los sistemas de navegación inercial a bordo de buques de posicionamiento
dinámico [en línea]. (tesis) Universidad de la Laguna S.l.: s.n. 2014. pp. 48-64 [Consulta: 19 enero 2020]. Disponible en: http://riull.ull.es/xmlui/handle/915/198.
PIXHAWK. What is Pixhawk [en línea]. 2018. [Consulta: 20 enero 2020]. Disponible en: https://Pixhawk.org/.
ESTRADA-TREJO, Astrid C., et al. Predicción de trayectorias usando el filtro de Kalman. Research in Computing Science, 2019, vol. 148, p. 307-316.
LEÓN, J., & CUENCA, L. Implementación de un sistema de navegación inercial, para mejorar la precisión de posicionamiento de un prototipo GPS en una trayectoria dentro de la ESPOCH. [en línea]. (tesis) ESPOCH.
Riobamba-Ecuador, 2017, pp. 15-50. [Consulta: 14 enero 2020]. Disponible en: http://dspace.espoch.edu.ec/handle/123456789/7959.
ARDUPILOT Motor and Servo Configuration [en línea]. 2019. [Consulta: 30 enero 2020]. Disponible en: https://ardupilot.org/ardupilot/index.html.
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Carmen Bastidas, Marco Lema, Freddy Chávez, Fausto Cabrera Aguayo, Diego Ñacato
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
The authors of the manuscripts will retain their copyright on their articles published in Pespectivas Journal. These rights allow the authors to present their manuscripts in public, prepare derivative works, reproduce them physically by printing and distribute them on their social or research networks. These rights will remain unchanged as long as the authors respect the publication and free access policy of Perspectivas Journal.
Publication Rights
Perspectivas Journal reserves all first publication rights on each of the articles that the authors have sent to its review and publication process. It implies that authors will only exercise their copyright if they state the source and origin of the publication correctly, mainly when they distribute, share, present, or use their articles' total or partial content.