Evaluation of the performance of the Global Positioning System (GPS) and INS / GPS on an established trajectory

Authors

  • Carmen Bastidas Investigador Independiente
  • Marco Lema Investigador Independiente
  • Freddy Chávez Escuela Superior Politécnica de Chimborazo
  • Fausto Cabrera Aguayo Escuela Superior Politécnica de Chimborazo
  • Diego Ñacato Escuela Superior Politécnica de Chimborazo

DOI:

https://doi.org/10.47187/perspectivas.vol3iss1.pp10-17.2021

Keywords:

Global Positioning System (GPS), Navigation System, Inertial System, Autonomous Vehicle, Pixhawk, Track Accuracy

Abstract

The analysis of the accuracy of the Global Positioning System (GPS) versus DQ hybrid positioning system GPS and Inertial of Navigation. System (INS) allows determining which them offers greater accuracy in following an established path a GPS Module, inertial sensors and the Pixhawk controller card uses Kalman filter as a coupling method between GPS and INS, a telemetry system for data transmission and a decoder for the remote control. The test scenarios consist of two paths executed at 12:00 and 20:00 due to the atmospheric conditions present at different times of the day. It is confirmed that the GPS / INS system had an accuracy greater than GPS up to 73.6% on average of the two scenarios during the which day, while at night it increases the precision of up to 17.5%, this means that the implemented system has as a correction of errors produced due to ionization of the ionosphere, being the main attenuation factor of the GPS signal in the communication channel.

Métricas

References

SANZ SUBIRANA, J., et al. GNSS DATA PROCESSING, Vol. I: Fundamentals and Algorithms. Noordwijk-Netherlands: ESA Communications, 2013, pp. 1-63.

GLOBAL POSITIONING SYSTEM STANDARD POSITIONING SERVICE PERFORMANCE STANDARD, 4th ed., Department of Defense, United States of America, Sep 2008, approved for public release, distribution is unlimited.

DURÁN IGLESIAS, Victor. Sistema de navegación inercial 3D para VFR. 2017. Tesis de Licenciatura. Universitat Politècnica de Catalunya.

WANG, G., et al., "A GNSS/INS Integrated Navigation Algorithm Based on Kalman Filter". IFAC-PapersOnLine, (2018). p. 232-237. ISSN 2405896

MIGUEZ ALGABA, A., Integración de los sistemas de navegación inercial a bordo de buques de posicionamiento

dinámico [en línea]. (tesis) Universidad de la Laguna S.l.: s.n. 2014. pp. 48-64 [Consulta: 19 enero 2020]. Disponible en: http://riull.ull.es/xmlui/handle/915/198.

PIXHAWK. What is Pixhawk [en línea]. 2018. [Consulta: 20 enero 2020]. Disponible en: https://Pixhawk.org/.

ESTRADA-TREJO, Astrid C., et al. Predicción de trayectorias usando el filtro de Kalman. Research in Computing Science, 2019, vol. 148, p. 307-316.

LEÓN, J., & CUENCA, L. Implementación de un sistema de navegación inercial, para mejorar la precisión de posicionamiento de un prototipo GPS en una trayectoria dentro de la ESPOCH. [en línea]. (tesis) ESPOCH.

Riobamba-Ecuador, 2017, pp. 15-50. [Consulta: 14 enero 2020]. Disponible en: http://dspace.espoch.edu.ec/handle/123456789/7959.

ARDUPILOT Motor and Servo Configuration [en línea]. 2019. [Consulta: 30 enero 2020]. Disponible en: https://ardupilot.org/ardupilot/index.html.

Published

2021-01-10

How to Cite

[1]
C. Bastidas, M. Lema, F. Chávez, F. Cabrera Aguayo, and D. Ñacato, “Evaluation of the performance of the Global Positioning System (GPS) and INS / GPS on an established trajectory: Array”, Perspectivas, vol. 3, no. 1, pp. 10–17, Jan. 2021.

Issue

Section

Artículos arbitrados