Data analysis for efficient schedule optimization and Machine Learning

Authors

  • Rogelio Escobedo Mitre Departamento de Sistemas y computación, Instituto Tecnológico de Tijuana, Tecnológico Nacional de México
  • Ángeles Quezada Cisnero Departamento de Sistemas y computación, Instituto Tecnológico de Tijuana, Tecnológico Nacional de México
  • Bogart Yair Marquez Lobato Departamento de Sistemas y computación, Instituto Tecnológico de Tijuana, Tecnológico Nacional de México
  • Arnulfo Alanis Garza Departamento de Sistemas y computación, Instituto Tecnológico de Tijuana, Tecnológico Nacional de México

DOI:

https://doi.org/10.47187/perspectivas.6.2.223

Keywords:

Machine learning, automation, scheduling

Abstract

In recent years, the integration of machine learning (ML) techniques into school management systems offers several opportunities to enhance efficiency and decision-making in the educational field. Applying ML in education can yield significant benefits. However, it is important to note that the successful integration of ML techniques into school management systems requires a robust data infrastructure, proper data collection, and consideration of ethical and privacy issues. Furthermore, ML should not replace human interaction in education but rather complement and improve it by providing educators and students with additional tools for educational success. Due to the increased complexity in the curriculum of the Computer Systems Engineering program, it is necessary to carry out a more reliable and automated prediction of semester schedules. To address the manual scheduling generation problem, a comprehensive analysis of the existing process was conducted. This involved gathering relevant information on how semester schedules are currently generated in the educational institution. The current approach used for scheduling was studied, along with an analysis of the problems and limitations associated with the manual process. Various ML techniques that could be applied to the scheduling generation problem were investigated. This could include optimization algorithms, clustering or classification algorithms, genetic algorithms, or other machine learning approaches that can be adapted to the specific problem.

 

Métricas

References

J. O. Yunga Pedraza, «Estudio del estado del arte sobre la predicción de deserción universitaria usando machine learning,» de Universidad Salesiana, Ecuador, 2023.

A. U. Castaneda, «Un viaje hacia la inteligencia artificial en la educación,» Realidad y Reflexion, pp. 121-136, 2022.

C. Russo, «Tratamiento Masivo de Datos Utilizando Técnicas de Machine Learning,» REDI, pp. 131-134, 2016.

A. D. Luca, «Uso de la Técnica de Transfer Learning en Machine Learning para la Clasificación de Productos en el Banco Alimentario de La Plata,» SEDICI, pp. 1-16, 2021.

B. A. A. BENITEZ, GENERACION DE HORARIOS MEDIANTE SISTEMAS, México, D.F.: Instituto Politécnico Nacional. Centro de Investigación en Computación, 2007.

E. B. Cañón, «Modelo predictivo del progreso en el aprendizaje de los estudiantes de uniminuto aplicando técnicas de machine learning,» de Scielo, Mexico, 2021.

D. Hinestroza Ramírez, «El Machine Learning a través de los tiempos, y los aportes a la humanidad,» Universidad Libre, pp. 1-17, 2019.

keepcoding, «keepcoding.io,» 2 diciembre 2022. [En línea]. Available: https://keepcoding.io/blog/ciclo-de-vida-de-un-proyecto-en-machine-learning/.

O. Simeone, «A Very Brief Introduction to Machine Learning With Applications to Communication Systems,» de IEEE, 2018.

B. Zarco García, «Algoritmos de clasificación supervisados y semi-supervisados: análisis y comparativa,» UPM, pp. 1-12, 2020.

"Introduction to Machine Learning with Python" de Andreas C. Müller y Sarah Guido. Libro "Pattern Recognition and Machine Learning" de Christopher M. Bishop.

"Introduction to Information Retrieval" de Christopher D. Manning, Prabhakar Raghavan, y Hinrich Schütze.

"An Introduction to the Analysis of Variance" de Ronald A. Fisher.

"Logistic Regression: A Self-Learning Text" de David G. Kleinbaum y Mitchel Klein. Libro "Introduction to the Practice of Statistics" de David S. Moore, George P. McCabe y Bruce A. Craig.

"The Elements of Statistical Learning" de Trevor Hastie, Robert Tibshirani y Jerome Friedman.

“Support Vector Machines" de Nello Cristianini y John Shawe-Taylor.

Víctor Fabio Suarez, Omar Danilo Castrillón, «Diseño de una metodología basada en técnicas inteligentes para la distribución de procesos Académicos en ambientes de trabajo job shop.

Michael W. Carter, “A Comprehensive Course Timetabling and Student Scheduling System at the University of Waterloo” 2001

Elias Ventura, Eva Marcela, Mendoza Pacas, Carlos Rafael, “Análisis y diseño de un planificador automatizado de horarios universitarios”, 2002

Mireya Flores Pichardo, “Revisión de Algoritmos Genéticos Aplicados al Problema de la Programación de Cursos Universitarios” 2011.

Published

2024-05-14

How to Cite

[1]
R. Escobedo Mitre, Ángeles Quezada Cisnero, B. Y. Marquez Lobato, and A. Alanis Garza, “Data analysis for efficient schedule optimization and Machine Learning”, Perspectivas, vol. 6, no. 2, May 2024.

Issue

Section

Artículos arbitrados

Similar Articles

You may also start an advanced similarity search for this article.