Implementation of a controller for an inverted pendulum type robot

Authors

  • Josepablo Cruz Baas *Facultad de Matemáticas, Universidad Autónoma de Yucatán
  • Jorge Ríos Martínez Facultad de Matemáticas, Universidad Autónoma de Yucatán
  • Ernesto Olguín Díaz CINVESTAV – Unidad Saltillo
  • Francisco Moo Mena Facultad de Matemáticas, Universidad Autónoma de Yucatán

DOI:

https://doi.org/10.47187/perspectivas.6.2.222

Keywords:

Inverted pendulum, control software, LQR

Abstract

In indoor mobile robotics, wheeled robots stand out due to their simpler mechanics and lower maintenance requirements compared to legged articulated robots. This work describes the phases for implementing control software for an inverted pendulum robot using the Linear Quadratic Regulator (LQR) algorithm. The software architecture can be decomposed into large abstraction blocks, combining embedded software libraries and software components developed specifically for the project. Most inverted pendulum projects use a PID control, primarily due to the simplicity of its implementation. This method is functional but lacks scalability, consumes time, and, although some implementations exhibit excellent disturbance rejection, there is no guarantee of stability if any robot parameter changes. The developed prototype could serve as an experimental foundation for future research in mobile robotics or automatic control.

Métricas

References

P. Frankovský, L. Dominik, A. Gmiterko, and I. Virgala,

“Modelling of two-wheeled self-balancing robot driven by

gearmotors” International Journal of Applied Mechanics and

Engineering, vol.22, 2017.

E. Olguín-Díaz, “3D Motion of Rigid Bodies:

A Foundation for Robot Dynamics Analysis”, ser.

Studies in Systems, Decision and Control. Springer

International Publishing, 2018. [Online]. Available:

https://books.google.com.mx/books?id=9vt9DwAAQBAJ.

G. Rigatos, K. Busawon, J. Pomares, and M. Abbaszadeh,

“Nonlinear optimal control for the wheeled inverted pendu-

lum system” Robotica, vol. 38, no. 1, pp. 29–47, 2020.

S. Kim and S. Kwon, “Dynamic modeling of a two-wheeled

inverted pendulum balancing mobile robot” International

Journal of Control, Automation and Systems, vol. 13, no. 4,

pp. 926–933, 2015.

C.-F. Hsu and W.-F. Kao, “Double-loop fuzzy motion control

with cog supervisor for two-wheeled self-balancing assistant

robots” International Journal of Dynamics and Control, pp.

–16,2020.

H. Ahmadi Jeyed and A. Ghaffari, “A nonlinear optimal

control based on the sdre technique for the two-wheeled self-

balancing robot” Australian Journal of Mechanical Enginee-

ring, pp.1–9, 2020.

R. D. Huerta Gil, “Control de un p ́endulo invertido sobre

dos ruedas de tres grados de libertad” Thesis, Universidad

Nacional Autónoma de México, 2014.

M. Fauziyah, Z. Amalia, I. Siradjuddin, D. Dewatama, R. P.

Wicaksono, and E. Yudaningtyas, “Linear quadratic regulator

and pole placement for stabilizing a cart inverted pendulum

system” Bulletin of Electrical Engineering and Informatics,

vol. 9, no. 3, pp. 914–923, 2020.

M. R. Bageant, “Balancing a two-wheeled segway robot”

Thesis, Massachusetts Institute of Technology, 2011.

F. Grasser, A. D’arrigo, S. Colombi, and A. C. Rufer, “Joe: a

mobile, inverted pendulum” IEEE Transactions on industrial

electronics, vol. 49, no. 1, pp. 107–114, 2002.

V. Mudeng, B. Hassanah, Y. T. K. Priyanto, and O. Saputra,

“Design and simulation of two-wheeled balancing mobile ro-

bot with pid controller” International Journal of Sustainable

Transportation, vol. 3, no. 1, pp. 12–19, 2020.

H. Nabil, “Supervised neural network control of real-time two

wheel inverted pendulum” Journal of Advanced Engineering

Trends, vol. 38, no. 2, pp. 131–146, 2020.

O. E. Aburas and A. H. Ahmed, “A guide to implement a two

wheeled robot using pole-placement on arduino” The Inter-

national Journal of Engineering and Information Technology

(IJEIT), vol. 6, 2020.

M. Velazquez, D. Cruz, S. Garcia, and M. Bandala, “Velocity

and motion control of a self-balancing vehicle based on a

cascade control strategy” International Journal of Advanced

Robotic Systems, vol. 13, Apr. 2016.

H. Hellman and H. Sunnerman, “Two-wheeled self-balancing

robot,” Thesis, KTH Royal Institute of Technology, 2015.

C. Dengler and B. Lohmann, “Adjustable and adaptive control

for an unstable mobile robot using imitation learning with

trajectory optimization” Robotics, vol. 9, no. 2, p. 29, 2020.

R. P. M. Chan, K. A. Stol, and C. R. Halkyard, “Review

of modelling and control of two-wheeled robots” Annual

Reviews in Control, vol. 37, pp. 89–103, Apr. 2013.

J. Morantes, D. Espitia, O. Morales, R. Jiménez, and O. Avi-

les, “Control system for a segway” International Journal of

Applied Engineering Research (IJAER), vol. 13, 2018.

D. M Abd-elaziz, “Conventional fuzzy logic controller for ba-

lancing two-wheel inverted pendulum” Journal of Advanced

Engineering Trends, vol. 38, no. 2, pp. 107–119, 2020.

M. Moness, D. Mahmoud, and A. Hussein, “Real-time

mamdani-like fuzzy and fusion-based fuzzy controllers for

balancing two-wheeled inverted pendulum” Journal of Am-

bient Intelligence and Humanized Computing, pp. 1–17, 2020.

T. Johnson, S. Zhou, W. Cheah, W. Mansell, R. Young, and

S. Watson, “Implementation of a perceptual controller for an

inverted pendulum robot,” Journal of Intelligent & Robotic

Systems, pp. 1–10, 2020.

Pololu, “Gearmotor 4752” Accedido en 01-10-2019 a

https://www.pololu.com/product/4752/specs, 2019.

Published

2024-05-14

How to Cite

[1]
J. Cruz Baas, J. Ríos Martínez, E. Olguín Díaz, and F. Moo Mena, “Implementation of a controller for an inverted pendulum type robot”, Perspectivas, vol. 6, no. 2, May 2024.

Issue

Section

Artículos arbitrados

Similar Articles

You may also start an advanced similarity search for this article.