12
Revista Científica Perspectivas
ISSN: 1390-7204
Artículo Recibido: dd/mm/aaa – Aceptado: dd/mm/aaaa
HITEN, pp. 000275–000280, ene. 2013, doi:
10.4071/HITEN-WP11.
[16] M. R. Hasan, A. Motayed, M. S. Fahad, y M. V. Rao,
“Fabrication and comparative study of DC and low
frequency noise characterization of GaN/AlGaN based
MOS-HEMT and HEMT”, J. Vac. Sci. Technol. B, vol.
35, núm. 5, p. 052202, ago. 2017, doi:
10.1116/1.4998937.
[17] J. G. Tartarin, S. Karboyan, F. Olivié, G. Astre, L. Bary,
y B. Lambert, “I-DLTS, electrical lag and low frequency
noise measur
ements of trapping effects in AlGaN/GaN
HEMT for reliability studies”, en 2011 6th European
Microwave Integrated Circuit Conference, oct. 2011, pp.
438–441.
[18] H. Rao y G. Bosman, “Device reliability study of
AlGaN/GaN high electron mobility transistors under
high gate and channel electric fields via low frequency
noise spectroscopy”, Microelectron. Reliab., vol. 50,
núm. 9, pp. 1528–1531, sep. 2010, doi:
10.1016/j.microrel.2010.07.073.
[19] J. G. Tartarin, G. Astre, S. Karboy
an, T. Noutsa, y B.
Lambert, “Generation-recombination traps in
AlGaN/GaN HEMT analyzed by time-domain and
frequency-domain measurements: Impact of HTRB
stress on short term and long term memory effects”, en
2013 IEEE International Wireless Symposium (IWS),
abr. 2013, pp. 1–4, doi: 10.1109/IEEE-
IWS.2013.6616840.
[20] Á. B. Uscátegui, “El Ruido 1/f”, Ingeniería, vol. 5, núm.
1, pp. 28–36, 2000.
[21] C. D. Motchenbacher y J. A. Connelly, Low noise
electronic
system design. Wiley, 1993.
[22] M. von Haartman y M. Östling, Low-Frequency Noise in
Advanced MOS Devices. Springer Netherlands, 2007.
[23] O. Marinov, “The low frequency noise in HFETs
estimates the effect of electrical stress”, Microelectron.
Reliab., vol. 40, núm. 11, pp. 1959–1963, nov. 2000, doi:
10.1016/S0026-2714(00)00065-2.
[24] X. Y. Chen, A. Pedersen, y A. D. van Rheenen, “Effect
of electrical and thermal stress on low-frequency noise
characteri
stics of laser diodes”, Microelectron. Reliab.,
vol. 41, núm. 1, pp. 105–110, ene. 2001, doi:
10.1016/S0026-2714(00)00201-8.
[25] C. Kayis, C. Y. Zhu, M. Wu, X. Li, Ü. Özgür, y H.
Morkoç, “Low-frequency noise measurements of
electrical stress in InAlN/GaN and AlGaN/GaN
heterostructure field-effect transistors”, en Gallium
Nitride Materials and Devices VI, mar. 2011, vol. 7939,
p. 79392G, doi: 10.1117/12.875723.
[26] O. Marinov, M. J. Deen, V. Loukanov, y V. Velikov,
“The
low frequency noise in reverse biased rectifier
diodes”, IEEE Trans. Electron Devices, vol. 49, núm. 1,
pp. 184–187, ene. 2002, doi: 10.1109/16.974768.
[27] O. Marinov y M. J. Deen, “Low-Frequency Noise
Partition of Asymmetric MOS Transistors Operating in
Linear Regime”, IEEE Electron Device Lett., vol. 30,
núm. 8, pp. 840–842, ago. 2009, doi:
10.1109/LED.2009.2023382.
[28] C. Claeys, M. Aoulaiche, M. G. C. Andrade, M.
Rodrigues, J. A. Martino, y E. Simoen, “(Invited) L
ow
Frequency Noise Performance of State-of-the-Art and
Emerging CMOS Devices”, ECS Trans., vol. 45, núm. 3,
pp. 567–580, abr. 2012, doi: 10.1149/1.3700921.
[29] F. Sandoval Ibarra, N. Melchor Hernández, y S. Ortega
Cisneros, “Análisis, modelado y simulación del ruido
flicker en transistores MOS”, Acta Univ., vol. 23, núm.
5, 2013, Consultado: nov. 04, 2018. [En línea].
:ne elbinopsiD
http://www.redalyc.org/resumen.oa?id=41629559003.
[30] A. A. Balandin, “Low-freque
ncy 1/f noise in graphene
devices”, Nat. Nanotechnol., vol. 8, núm. 8, pp. 549–
555, ago. 2013, doi: 10.1038/nnano.2013.144.
[31] D. M. Fleetwood, “$1/f$Noise and Defects in
Microelectronic Materials and Devices”, IEEE Trans.
Nucl. Sci., vol. 62, núm. 4, pp. 1462–1486, ago. 2015,
doi: 10.1109/TNS.2015.2405852.
[32] V. E. I. E. U. Chye, “Universal multichannel system for
low frequency noise measurement”, en 2017
International Siberian Conference on Control and
Communications (SIBCON), jun. 2017, pp. 1–5, doi:
10.1109/SIBCON.2017.7998532.
[33] M. A. Belaïd, K. Ketata, K. Mourgues, M. Gares, M.
Masmoudi, y J. Marcon, “Reliability study of power RF
LDMOS device under thermal stress”, Microelectron. J.,
vol. 38, núm. 2, pp. 164–170, feb. 2007, doi:
10.1016/j.mejo.2006.08.004.
[34] K. Cho et al., “Electric Stress-Induced Threshold
Voltage Instability of Multilayer MoS2 Field Effect
Transistors”, ACS Nano, vol. 7, núm. 9, pp. 7751–7758,
sep. 2013, doi: 10.1021/nn402348r.
[35] L. Yang y A. Castellazzi, “High temperature gate-bias
and reverse-bias tests on SiC MOSFETs”,
Microelectron. Reliab., vol. 53, núm. 9, pp. 1771–1773,
sep. 2013, doi: 10.1016/j.microrel.2013.07.065.
[36] “Keithley 4200A-SCS Parameter Analyzer | Tektronix”.
https://www.tek.com/keithley-4200a-scs-parameter-
analyzer (consultado feb. 26, 2020).
[37] A. Ortiz Conde, “A review of recent MOSFET threshold
voltage extraction methods”, Microelectron. Reliab.,
vol.
42, núm. 4–5, pp. 583–596, abr. 2002, doi:
10.1016/S0026-2714(02)00027-6.
[38] S. Kasap y P. Capper, Eds., Springer Handbook of
Electronic and Photonic Materials, 2a ed. Springer
International Publishing, 2017.
[39] R. M. Barcia Macías, “Desarrollo de un sistema de
medición de ruido de baja frecuencia para
caracterización de canales conductivos en dispositivos
electrónicos.”, Escuela Superior Politécnica de
Chimborazo, Riobamba, 2019.
[40] J. Lutz, H. Schlangeno
tto, U. Scheuermann, y R. D.
Doncker, Semiconductor Power Devices: Physics,
Characteristics, Reliability. Berlin Heidelberg: Springer-
Verlag, 2011.
[41] J. L. Hernandez y C. Pace, “Embedded mini-Heater
design for power loss remote measurement and thermal
runaway control on power devices for Accelerated Life
Testing”, en 2016 IEEE Ecuador Technical Chapters
Meeting (ETCM), oct. 2016, pp. 1–6, doi:
10.1109/ETCM.2016.7750864.
[42] A. Toro, “Implementación de un prototipo de fue
nte de
alimentación de 1200v de baja corriente para pruebas de
estrés eléctrico en transistores de potencia”, Escuela
Superior Politécnica de Chimborazo, Riobamba, 2020.
[43] J. W. Evans y J. Y. Evans, Eds., Product Integrity and
Reliability in Design. London: Springer-Verlag, 2001.
Volumen 2, Número 2. (Julio - Diciembre 2020)
e -ISSN: 2661-6688