Analysis of underwater optical communications propagation

Authors

  • Madelaine Stefanie Muñoz Zambrano Espoch
  • Español Ruiz Jimenez

DOI:

https://doi.org/10.47187/perspectivas.5.2.200

Keywords:

Fibra Óptica, Fibra Mono-Modo, Fimmwave, Comunicaciones, Comunicaciones Subacuáticas

Abstract

This article presents a study of light propagation in aquatic environments. The main objective was to investigate and understand the phenomena that cause propagation losses in the transmission of light in liquid media, specifically water under different conditions.  To study the behavior of these waves in a liquid medium, a simulation was carried out using a Corning SMF-28 single-mode optical fiber with a water transition using the FIMMWAVE software and performing an analysis through polynomail regression, relating the variation of the wavelength as a function of the permittivity of the water, with which an equation with a polynomial behavior of order 11 was obtained. The wavelengths analyzed spanned a range of 0.18 to 1.13 μm, considering drinking water as the transition medium. In the analysis of results, FIMMWAVE's WG Scanner tool was used to analyze the propagation modes in the optical fiber, observing an exponential behavior beyond a certain wavelength value. This study seeks to advance the knowledge of underwater communications and provide relevant information for the design and optimization of optical transmission systems in aquatic environments. Understanding light propagation in this context is critical to improving the quality and efficiency of submarine communications.

Métricas

References

H. KAUSHAL y G. KADDOUM, «Underwater Optical Wireless Communication,» IEEE access, vol. 4, pp. 1518-1547, 2016.

I. F. AKYILDIZ, P. WANG y S.-C. LIN, «SoftWater: Software-defined networking for next-generation underwater communication systems,» Ad Hoc Networks, vol. 46, pp. 1-11, 2016.

M. Zou, X. Tu, S. Yang, H. Fang, X. Wen y F. Qu, «Channel Distribution and Noise Characteristics of Distributed Acoustic Sensing Underwater Communications,» IEEE Sensors Journal, vol. 21, nº 21, pp. 24185-24194, 2021.

Y. Ata, A. Hanaa, L. Bariah, S. Muhaidat y M. A. Imran, «Intelligent Reflecting Surfaces for Underwater Visible Light Communications,» IEEE Photonics Journal, vol. 15, nº 1, pp. 1-10, 2023.

F. Yu, D. Li, Q. Guo, Z. Wang y W. Xiang, «Block-FFT Based OMP for Compressed Channel Estimation in Underwater Acoustic Communications,» IEEE Communications Letters, vol. 19, nº 11, pp. 1937-1940, 2015.

S. Gu, L. Zhang, S. Guo , L. Zheng, R. An, T. Jiang y A. Xiong, «Communication and Cooperation for Spherical Underwater Robots by Using Acoustic Transmission,» IEEE/ASME Transactions on Mechatronics, vol. 28, nº 1, pp. 292-301, 2023.

J. Oberreuter, J. Uribe, R. Zamora, G. Gacitúa y A. Rivera, «semanticscholar,» 13 06 2014. [En línea]. Available: https://www.semanticscholar.org/paper/Mediciones-de-espesor-de-hielo-en-Chile-usando-eco-Oberreuter-Uribe/86be6a1df0ecc8afe9793a602aaf9f7cba56666f. [Último acceso: 05 04 2023].

S. He, N. Wang, M. Ho, J. Zhu y G. Song, «Design of a New Stress Wave Communication Method for Underwater Communication,» IEEE Transactions on Industrial Electronics, vol. 68, nº 8, pp. 7370-7379, 2021.

Z. YU y P. WU, «Underwater communication and optical camouflage ionogels,» Advanced Materials, vol. 33, nº 24, p. 2008479.

M. Jain, N. Sharma, A. Gupta, D. Rawal y P. Garg, «Performance Analysis of NOMA Assisted Underwater Visible Light Communication System,» IEEE Wireless Communications Letters, vol. 9, nº 8, pp. 1291-1294, 2020.

C. G. d. l. Fuente, «PV ALBEITAR,» 07 11 2013. [En línea]. Available: https://www.adiveter.com/ftp_public/A3081113.pdf. [Último acceso: 05 04 2023].

J. Jiajia, W. Xianquan, D. Fajie, F. Xiao, L. Chunyue y S. Zhongbo, «A Basic Bio-Inspired Camouflage Communication Frame Design and Applications for Secure Underwater Communication Among Military Underwater Platforms,» IEEE Access, vol. 8, pp. 24927-24940, 2020.

P. Zhu, X. Xu, X. Tu, Y. Chen y Y. Tao, «Anti-Multipath Orthogonal Chirp Division Multiplexing for Underwater Acoustic Communication,» IEEE Access, vol. 8, pp. 13305-13314, 2020.

J. YIN, W. GE, X. HAN, B. Liu y L. Guo, «Partial FFT Demodulation With IRC in MIMO-SC-FDE Communication Over Doppler Distorted Underwater Acoustic Channels,» IEEE Communications Letters, vol. 23, nº 11, pp. 2086-2090, 2019.

Y. Zhou, F. Tong, A. Song y R. Diamant, «Exploiting Spatial–Temporal Joint Sparsity for Underwater Acoustic Multiple-Input–Multiple-Output Communications,» IEEE Journal of Oceanic Engineering, vol. 46, nº 1, pp. 352-369, 2021.

M. Jouhari, K. Ibrahimi, H. Tembine y J. Ben-Othman, «Underwater Wireless Sensor Networks: A Survey on Enabling Technologies, Localization Protocols, and Internet of Underwater Things,» IEEE Access, vol. 7, pp. 96879-96899, 2019.

Á. CARBAJAL AZCONA y M. GONZÁLEZ FERNÁNDEZ, «UCM,» 2012. [En línea]. Available: https://www.ucm.es/data/cont/docs/458-2013-07-24-Carbajal-Gonzalez-2012-ISBN-978-84-00-09572-7.pdf. [Último acceso: 10 05 2023].

Y. Weng, J. Pajarinen, R. Akrour, T. Matsuda, J. Peters y T. Maki, «Reinforcement Learning Based Underwater Wireless Optical Communication Alignment for Autonomous Underwater Vehicles,» IEEE Journal of Oceanic Engineering, vol. 47, nº 4, pp. 1231-1245, 2022.

H. Medwin, «Sounds in the Sea: From Ocean Acoustics to Acoustical Oceanography,» vol. 121, nº ISBN: 978-0-521-82950-2, p. 643, 2005.

D. Wei, L. Yan, C. Huang, J. Wang, J. Chen, M. Pan y Y. Fang, «Dynamic Magnetic Induction Wireless Communications for Autonomous-Underwater-Vehicle-Assisted Underwater IoT,» IEEE Internet of Things Journal, vol. 7, nº 10, pp. 9834-9845, 2020.

H. Zhang, Y. Dong y L. Hui, «On Capacity of Downlink Underwater Wireless Optical MIMO Systems With Random Sea Surface,» IEEE Communications Letters, vol. 19, nº 12, pp. 2166-2169, 2015.

C. Lin, G. Han, J. Jiang, C. Lin, S. B. H. Shah y Q. Liu, «Underwater Pollution Tracking Based on Software-Defined Multi-Tier Edge Computing in 6G-Based Underwater Wireless Networks,» IEEE Journal on Selected Areas in Communications, vol. 41, nº 2, pp. 491-503, 2023.

D. Wei, C. Huang, X. Li, B. Lin, M. Shu, J. Wang y M. Pan, «Power-Efficient Data Collection Scheme for AUV-Assisted Magnetic Induction and Acoustic Hybrid Internet of Underwater Things,» IEEE Internet of Things Journal, vol. 9, nº 14, pp. 11675-11684, 2022.

G. Qiao, X. Liu, L. Ma, S. Mazhar y Y. Zhao, «Residual Doppler Effect Analysis of the FBMC/OQAM Communication System in Underwater Acoustic Channel,» IEEE Communications Letters, vol. 25, nº 9, pp. 3090-3093, 2021.

M. Daimon y A. Masumura, «PubMed,» Nacional Library of Medicine, 05 06 2007. [En línea]. Available: https://pubmed.ncbi.nlm.nih.gov/17538678/. [Último acceso: 16 05 2023].

X. TU, X. XU, Z. ZOU, L. YANG y J. WU, «Fractional Fourier domain hopped communication method based on chirp modulation for underwater acoustic channels,» Journal of Systems Engineering and Electronics, vol. 28, nº 3, pp. 449-456, 2017.

W. Yu, Y. Chen, L. Wan, X. Zhang, P. Zhu y X. Xu, «An Energy Optimization Clustering Scheme for Multi-Hop Underwater Acoustic Cooperative Sensor Networks,» IEEE Access, vol. 8, pp. 89171-89184, 2020.

W. Su, J. Tao, Y. Pei, L. Xiao y E. Cheng, «Reinforcement Learning Based Efficient Underwater Image Communication,» IEEE Communications Letters, vol. 25, nº 3, pp. 883-886, 2021.

FIMMWAVE, FDM SOLVER (REAL), vol. 1, info@photond.com, 2022, pp. 63-228.

Published

2023-08-16

How to Cite

[1]
M. S. Muñoz Zambrano and E. S. Ruiz Jimenez, “Analysis of underwater optical communications propagation ”, Perspectivas, vol. 5, no. 2, pp. 39–48, Aug. 2023.

Issue

Section

Artículos arbitrados